北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2008, Vol. 31 ›› Issue (3): 89-93.doi: 10.13190/jbupt.200803.89.xuey

• 研究报告 • 上一篇    下一篇

认知无线电中基于相似性的自适应分簇算法

薛 钰,曾志民,郭义武,郭彩丽   

  1. 北京邮电大学 通信网络综合技术研究所, 北京 100876
  • 收稿日期:2007-09-07 修回日期:1900-01-01 出版日期:2008-06-28 发布日期:2008-06-28
  • 通讯作者: 薛 钰

A Comparability Based Adaptive Clustering Algorithm
in Cognitive Radio Network

XUE Yu, ZENG Zhi-min, GUO Yi-wu, GUO Cai-li   

  1. Institute of Telecommunication Network Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2007-09-07 Revised:1900-01-01 Online:2008-06-28 Published:2008-06-28
  • Contact: XUE Yu

摘要:

针对认知无线电网络(CRN)中可用信道实时变化的特点,运用图形理论提出一种基于相似性的自适应分簇(CBAC)算法. 以用户可用信道的相似性为基础,结合考虑用户的移动性,通过计算节点权值实现CRN的优化分簇. 仿真分析证明,CBAC算法提高了系统的链路平均可用信道数,相比传统的分簇算法,能提高频谱的利用效率.

关键词: 认知无线电, 自适应分簇, 可用信道相似性, 链路平均可用信道

Abstract:

According to the characteristic of real-time changes of available channels in cognitive radio network, a new comparability based adaptive clustering algorithm (CBAC) in application of graph theory is proposed. Based on the comparability of users’ available channels and the consideration of mobility of cognitive radio users, the algorithm optimizes the clustering result in cognitive radio network via computing the node’s weight. Experiments show that the CBAC algorithm increases the number of the link’s average available channels and has higher spectrum utilization rate and lower communication overhead than that of traditional clustering algorithms.

Key words: cognitive radio;adaptive clustering;comparability of available channel;link&rsquo, s average available channels

中图分类号: